计算机模拟筛选雷公藤内酯醇治疗银屑病的靶标蛋白

李家璜,胡桉,郑伟娟*,华子春*

中国药学杂志 ›› 2014, Vol. 49 ›› Issue (13) : 1133-1138.

PDF(1831 KB)
PDF(1831 KB)
中国药学杂志 ›› 2014, Vol. 49 ›› Issue (13) : 1133-1138. DOI: 10.11669/cpj.2014.13.010
论著

计算机模拟筛选雷公藤内酯醇治疗银屑病的靶标蛋白

  • 李家璜,胡桉,郑伟娟*,华子春*
作者信息 +

Screening of Target Protein of Triptolide on Psoriasis by Molecular Docking

  • LI Jia-huang, HU An, ZHENG Wei-juan*, HUA Zi-chun*
Author information +
文章历史 +

摘要

目的 应用虚拟筛选方法预测雷公藤内酯醇作用靶标, 以期阐明雷公藤治疗银屑病机制。方法 根据银屑病的病理学特征,从PDTD(Potential Drug Target Database)数据库中筛选到的一批与雷公藤内酯醇可能发生相互作用的蛋白质中,选取视黄酸结合蛋白2、Caspase-1、蛋白S100-A9、视黄酸受体-alpha、视黄酸受体-beta、视黄酸受体-gamma、VEGFR以及血管生成素-1受体等8种可能与银屑病治疗相关的蛋白质靶标,利用Autodock 4.2分子对接软件,对雷公藤内酯醇与上述蛋白质靶标进行了逐一的精细对接和分析。 结果 通过比较其结合自由能、预测其抑制常数,并分析雷公藤内酯醇与蛋白质靶标的相互作用,发现雷公藤内酯醇与视黄酸结合类蛋白的相互作用最为强烈。结论 雷公藤内酯醇治疗银屑病的药理学机制可能与视黄酸相关信号通路有关,我们的研究为进一步的药理学机制研究奠定了基础.

Abstract

To explore the mechanism of Chinese herb Tripterygium wilfordii Hook f. in treatment with psoriasis,the virtual screening method was used to predict the potential protein targets of triptolide, one of the main effective compounds in Tripterygium. METHODS According to the pathological features of psoriasis,eight proteins were selected, including retinoic acid binding protein 2, caspase-1, protein S100-A9, retinoic acid receptor-α, β and γ, VEGFR, and angiopoietin-1 receptor, from the protein pool we got by screening potential drug target database with molecular docking method. A software AUTODOCK 4.2 was used to find the potential protein targets of triptolide by careful matching and analysis of interaction between triptolide and each of these eight proteins one by one. RESULTS The docking results, combined with the comparation of their binding energy and inhibition constants, showed that the interactions between triptolide and those retinoic acid binding proteins are most strong. CONCLUSION The pharmaceutical mechanism of triptolide in treatment of psoriasis may be related with retinoic acid related signaling pathway. Our study may provide some valuable clues in the study of pharmaceutical mechanism of triptolide.

关键词

银屑病 / 雷公藤内酯醇 / 蛋白质靶标 / 计算机模拟筛选

Key words

psoriasis / triptolide / protein target / computer screening

引用本文

导出引用
李家璜,胡桉,郑伟娟*,华子春*. 计算机模拟筛选雷公藤内酯醇治疗银屑病的靶标蛋白[J]. 中国药学杂志, 2014, 49(13): 1133-1138 https://doi.org/10.11669/cpj.2014.13.010
LI Jia-huang, HU An, ZHENG Wei-juan*, HUA Zi-chun*. Screening of Target Protein of Triptolide on Psoriasis by Molecular Docking[J]. Chinese Pharmaceutical Journal, 2014, 49(13): 1133-1138 https://doi.org/10.11669/cpj.2014.13.010
中图分类号: Q51    O629   

参考文献

[1] BAYLIFFE A L, BRIGANDI R A, WILKINS H J, et al. Emerging therapeutic targets in psoriasis . Cur Opin Pharmacol, 2004, 4: 1-5.[2] FAN B, LI B. Tripterygium and psoriasis treatment . J Liaoning Univ Tradit Chin Med (辽宁中医药大学学报), 2010 (2): 57-59.[3] ZHAN Q X, XU L M. Effiency of tripterygium wilfordii on treating psoriasis:A systematic review . Chin J Dermatovenereol Integr Tradit West Med(中国中西医结合皮肤性病学杂志), 2007, 6(3): 192-196. [4] LEUENROTH S J, CREWS C M. Studies on calcium dependence reveal multiple modes of action for triptolide . Chem Biol, 2005, 12:1259-1268.[5] LEUENROTH S J, BENCIVENGA N, IGARASHI P, et al. Triptolide reduces cystogenesis in a model of ADPKD . J Am Soc Nephrol, 2008, 19: 1659-1662.[6] MCCALLUM C, KWON S, LEAVITT P, et al. Triptolide binds covalently to a 90 kDa nuclear protein. Role of epoxides in binding and activity . Immunobiology, 2007, 212(7):549-556.[7] YANG X G, XU X Y, LI J H, et al. Selection of triptolide ligands from a random phage display library and primary verification of their combination . Chin J Anal Chem(分析化学), 2012, 40(3): 365-370.[8] STRACHAN R T, FERRARA G, ROTH B L. Screening the receptorome: An efficient approach for drug discovery and target validation . Drug Discovery Today, 2006, 11(15-16): 708-716.[9] MORRIS G M, HUEY R, LINDSTROM W, et al. Autodock4 and AutoDockTools4:Automated docking with selective receptor flexibility . J Comput Chem,2009, 16: 2785-2791. YUAN C Q, DING Z H. The structure and function of Caspase . J Med Mol Biol(医学分子生物学杂志), 2002, 24(3):146-151. GU J, WANG Y J, LIU H J. Research progress in relationship between S100a9 and tumor . Prog Mod Biomed(现代生物医学进展), 2009, 9(022): 4379-4380. MIYAZAKI Y, MATSUNAGA S, TANG J, et al. Novel 4-amino-furo pyrimidines as Tie-2 and VEGFR2 dual inhibitors . Bioorg Med Chem Letters, 2005, 15(9): 2203-2207. HODOUS B L, GEUNS-MEYER S D, HUGHES P E, et al. Evolution of a highly selective and potent 2-(pyridin-2-yl)-1, 3, 5-triazine Tie-2 kinase inhibitor. J Med Chem, 2007, 50(4): 611-626. ITOU H, YAO M, FUJITA I, et al. The crystal structure of human MRP14 (S100A9), a Ca+2-dependent regulator protein in inflammatory process . J Mol Biol, 2002, 316(2): 265-276. WILSON K P, BLACK J A F, THOMSON J A, et al. Structure and mechanism of interleukin-lβ converting enzyme. Nature, 1994, 370: 270-275. KLEYWEGT G J, BERGFORS T, SENN H, et al. Crystal structures of cellular retinoic acid binding proteins I and II in complex with all-trans-retinoic acid and a synthetic retinoid. Structure, 1994, 2(12): 1241-1258. RENAUD J P, ROCHEL N, RUFF M, et al. Crystal structure of the RAR-γ ligand-binding domain bound to all-trans retinoic acid . Nature, 1995, 378(6558): 681-689. EGEA P F, MITSCHLER A, MORAS D. Molecular recognition of agonist ligands by RXRs. Mol Endocrinol, 2002, 16(5): 987-997. OSZ J, BRELIVET Y, PELUSO-ILTIS C, et al. Structural basis for a molecular allosteric control mechanism of cofactor binding to nuclear receptors . Proceed Nat Acad Sci, 2012, 109(10): 588-594. QBRIEN T, FAHR B T, SOPKO M M, et al. Structural analysis of caspase-1 inhibitors derived from tethering . Acta Crystallogr, 2005, 61: 451-458.

基金

国家自然科学基金资助项目(81072712);国家基础科学人才培养基金项目(J1103512、J1210026);江苏省自然科学基金(BK2011573)
PDF(1831 KB)

Accesses

Citation

Detail

段落导航
相关文章

/